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Recent investigations of copper(I)/O2 reactivity relevant to
oxidative chemical processes and metalloenzyme active-site
chemistry have led to considerable advances.1 Nitrogen donor
ligands are utilized in studies of Cun-(O2) or Cun-(O)2 species,
emphasizing kinetics-thermodynamics,2 structures,1 correlations
to spectroscopy, and substrate reactivity. A number of X-ray
crystal structures are now available,1,3 including peroxo-dicop-
per(II) complexes either withµ-1,2 (end-on)3a or µ-η2:η2 (side-
on)1 coordination. CuIn/O2 reactions can directly giveµ-oxo
(O2-)-Cu(III) species, Cun-(O)2 (n ) 23b-e or n ) 33f), and
Tolman and co-workers3c have shown that the interconversion of
theµ-η2:η2-peroxo and bis-µ-oxo cores can occur. The nature of
the ligand (i.e., denticity, flexibility, steric, or electronic factors)
critically influences the structure formed and resulting reactivity
patterns; the controlling factors are under both experimental and
theoretical4 scrutiny. Here, we describe new insights with copper

complexes with MePY2.5 We observeboth side-on peroxo and

bis-µ-oxo species in a single L-CuI/O2 reaction, with novel
reactivity towardexogenoussubstrates. A related mono-µ-oxo
dicopper complex is also described, and its properties contrasted.

The side-onµ-η2:η2-peroxo-dicopper(II) ligation observed in
the O2-carrier protein hemocyanin6 was first proposed in studies
of O2-adducts [Cu2(Nn)(O2)]2+ {Nn are binucleating analogues
of MePY2, with -(CH2)n- (n ) 3-5) linkers}.7 Kitajima and
co-workers firmly established this binding mode in an X-ray
structure using pyrazolylborate ligands.1a,8Mononucleating ligands
RPY2 (R) Me, Ph, PhCH2,9 or PhCH2CH2

10) can also be utilized
to generate similar complexes, [{(RPY2)Cu}2(O2)]2+. Here,
significant new insights are obtained by examination of reactions
of [(MePY2)CuI(CH3CN)]BArF (1-BArF)5,11 (Scheme 1; PY)
2-pyridyl). This reacts with O2 at -80 °C in CH2Cl2 giving a
solution species formulated as [{(MePY2)Cu}2(O2)](BArF)2 (2-
(BArF)2) (but, see below){manometry (3 trials) Cu/O2 ) 2:1 (
15%; λmax ) 360 (ε ) 14400), 410 (sh, 2500), 530 (400), 654
(300) nm; EPR silent;1H NMR spectrum, diamagnetic}. Stopped-
flow kinetics measurements11 reveal that the rate ofintermolecular
O2-binding to copper in2-(BArF)2 is considerably reduced
compared to that seen for analogues with binucleating ligands,
i.e., [Cu2(N4)(O2)]2+ and [Cu2(XYL)(O2)]2+ (XYL, with m-xylyl
linker),2,12 with kon ) 1.91 (( 0.03)× 104 M-2 s-1 at -20 °C in
acetone (∆H q ) -0.7 ( 1 kJ M-1, ∆Sq ) -164 ( 4 J K-1

M-1); no intermediates are observed. Compared tointramolecular
O2-binding in those binuclear complexes,2-(BArF)2 exhibits the
strongest binding (enthalpically) yet seen for a Cu2-O2 species
(∆Hon° ) -89 ( 3 kJ mol-1), but is entropically destabilized
{∆Son° ) -240( 9 J K-1 M-1.2 2-(BArF)2 is stable for days at
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-80 °C in CH2Cl2, but decomposition (decrease in UV-vis
intensity) occurs after 100 min for the corresponding ClO4

-

analogue, whereas the PF6
- derivative degrades quickly.16 The

intense absorption at 360 nm is characteristic of the side-on peroxo
ligation,3d,15 as is the very low energy resonance Raman band
(Figure 1), ν(O-O) ) 730 cm-1, to 691 cm-1 with 18O2

substitution. However, the UV-vis and resonance Raman
signatures3d,e for the bis-µ-oxo-dicopper(III) core (2b) are also
observed;ν ) 588 cm-1 (18O2; 560 cm-1 with 18O2), and
preliminary profile studies indicate that the UV-vis 410 nm
shoulder is associated with [{(MePY2)Cu}2(O)2]2+ (2b). We
estimate this form (2b) to be present to the extent of 1-10%
relative to that of the side-on peroxo species [{(MePY2)Cu}2(µ-
η2:η2-O2)]2+ (2a).

Precipitation of2-(BArF)2 by addition of heptane ate-80
°C affords a dark purple solid, which is stable for weeks when
stored cold. Redissolution in cold CH2Cl2 gives the same UV-
vis spectrum observed in the1/O2 reaction. Thus, peroxo (2a)
and bis-µ-oxo (2b) complexes may be in rapid equilibrium, as
seen in Tolman’s systems.3c,16Factor analysis of the1/O2 reaction
kinetics (i) excludes the independent formation of two species,
whereas (ii) the subsequent decay of2 is not wavelength
dependent.

The dioxygen adduct mixture2 is most stable as a cold solution
in CH2Cl2 solvent, but2-(BArF)2 and 2-(ClO4)2 decompose
upon warming in all solvents, cleanly affording the blue-green
bis-µ-hydroxo-dicopper(II) complex [{MePY2)CuII}2(µ-OH-)]2+

(3) (Scheme 1), (λmax(CH2Cl2) ) 366 (ε ) 4000), 640 (150) nm;
ν(O-H) ) 3659 cm-1; µeff/Cu ) 1.49µB; paramagnetically shifted
1H NMR spectrum). An X-ray structure11 of the perchlorate salt
defines this often observed (ligand)/CuI/O2 degradation product
and structure type.3d-f,14b Cu‚‚‚Cu ) 3.012 (1) Å, Cu-O ) 1.953
(3)ave.

Reaction of2-(BArF)2 (-80 °C; excess O2 removed) with
added substrates is observed (Scheme 1): (i) Addition of 2,4-
di(tert-butyl)phenol gives3 plus the phenoxyl radical derived
coupling product 3,3′,5,5′-tetra-tert-butyl-2,2′-dihydroxybiphenyl.
This reaction is complete in minutes (-80 °C), as followed by
UV-vis (640 nm) spectroscopic formation of3. (ii) The thermal
decomposition of2-(BArF)2 in tetrahydrofuran (THF) solvent
cleanly affords3; monitoring of this pseudo-first-order reaction
(-80 °C) in THF-d8 yields a kH/kD ) 3.2. (iii) Reaction of
dihydroanthracene and 1,4-cyclohexadiene (∼1 equiv) gives
complete conversion of2 to 3 after∼16 h at-80 °C, on a UV-
vis scale. On a synthetic scale, reaction with 1 equiv of substrate

gave anthracene (>80%) and benzene (>70%), respectively.
These results point to the ability of2 to effect clean hydrogen-
atom abstraction reactions, seen elsewhere1b,c,3d,e,10,17asintramo-
lecular processes for peroxo or bis-µ-oxo complexes on the
copper-ligand as substrate,18 but here observed for exogenously
added hydrocarbon substrates.3e,19

Another type of µ-oxo-copper complex, with contrasting
behavior, can be generated by reaction of [(MePY2)CuI(CH3CN)]+

(1) with NO(g) in THF solution, producing [{MePY2)CuII}2(µ-
O)]2+ (4) (λmax ) 345 (4000), 680 (100) nm) (Scheme 1); N2O
product was detected qualitatively by gas chromatography (GC).20

Reaction of1 with 1 equiv of iodosylbenzene (PhIO) as the
O-atom donor also produces4 along with 1 equiv of PhI (GC
and NMR). Contrasting with the physical properties of [{Me-
PY2)CuII}2(µ-OH-)]2+ (3), those of4 have aν(O-H) vibration
which is absent, whereas its magnetic properties indicate stronger
antiferromagnetic coupling between Cu(II) ions,µeff/Cu ) 1.10
µB, and a1H NMR spectrum of4 is nearly identical to that of1.
Structural insight comes from EXAFS spectroscopy11 carried out
on frozen THF solutions of4-(BArF)2, revealing a best fit for 3
N atoms (from MePY2, with multiple scattering from two
pyridines) at 2.023 Å, plus a strong single Cu-ligand interaction
at 1.906 Å. This is consistent with a Cu-O (oxo) bond, shorter
than that observed for CuII-µ-OH- moieties, although longer than
in CuIII-(µ-O)-CuIII ,3d,e CuII-(µ-O)-FeIII ,21 or for Cu(II)-
peroxo1a bond distances. Also consistent with the CuII-O-CuII

formulation for4 are its observed reactions. Addition of 3 equiv
of PPh3 rapidly produces 1 equiv OdPPh3 and 2 equiv of
[(MePY2)CuI(PPh3)]+ (1, L ) PPh3, Scheme 1); by contrast,
reaction of PPh3 with 2 does not occur, and with3, it is very
sluggish. Titration of [{MePY2)CuII}2(µ-O)]2+ (4) with water (in
THF) leads directly to [{MePY2)CuII}2(µ-OH-)]2+ (3). By further
contrast,4 does not oxidize phenols or dihydroanthracene.

In summary, new insights into copper(I)/O2 reactivity include
the observation that the low-temperature product of reaction of
O2 with mononuclear complex [(MePY2)CuI-(CH3CN)]+ (1) is
[{(MePY2)Cu}2(O2)]2+ (2), which exisits as a mixture ofµ-η2:
η2-peroxo-dicopper(II) and some bis-µ-oxo-dicopper(III) spe-
cies.22 Finding of the latter confirms this possibility for the first
time when using ligands other than purely triazacycloalkane-3b-d

or etheylenediamine-containing donors,3e,f and further points to
the likely general importance of a side-on peroxo/bis-µ-oxo
equilibrium. The facile hydrogen-atom abstraction reactions
described for2 are rare examples of CuI/O2 derived Cu2-O2 (or
Cu2-(O)2, vide supra) oxidations of exogenous hydrocarbon
substrates.19 Further studies are needed to understand how the
nature of the ligand differentially influences the structure and
reactivity of CunI/O2 derived species.
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Figure 1. Solution resonance raman spectrum of dioxygen adduct of1
in acetone at-90 °C (386 nm excitation).
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